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ABSTRACT A traditional deep neural network-based classifier assumes that only training classes appear
during testing in closed-world settings. In most real-world applications, an open-set environment is more
realistic than a conventional approach where unseen classes are potentially present during the model’s
lifetime. Open-set recognition (OSR) provides the model with the capability to address this issue by
reducing open-set risk, in which unknown classes could be recognized as known classes. Unfortunately,
many proposed open-set techniques evaluate performance using ‘‘toy’’ datasets and do not consider transfer
learning, which has become common practice in deriving a strong performance from deep learning models.
We propose a quad-channel contrastive prototype network (QC-CPN) using quad-channel views of the input
with contrastive prototype loss for real-world applications. These open-set techniques also require the tuning
of new hyperparameters to justify their performance, so we first employ evolutionary simulated annealing
(EvoSA) to find good hyperparameters and evaluate their performance with our proposed approach. The
comparison results show that QC-CPN effectively outperforms other state-of-the-art techniques in rejecting
unseen classes in a domain-specific dataset using the same backbone (MNetV3-Large) and could become a
strong baseline for future study.

INDEX TERMS Machine learning, deep learning, prototype learning, open-set recognition, evolutionary
simulated annealing, novelty detection, out-of-distribution detection.

I. INTRODUCTION
Current deep neural networks attain outstanding predictions
in real-world cases. Many proposed architectures [1], [2] per-
form with roughly 90% accuracy on the popular large-scale
dataset, ImageNet [3]. In some applications, the convolu-
tional neural network achieves over 90% accuracy [4], [5].
These results demonstrate the effectiveness of deep learning
models in recognizing images.

Unfortunately, the model may encounter unseen classes in
some applications; therefore, enhancing the model to become
open to unseen classes will generate a trustworthy classifier
and benefit future learning. For instance, a waste detector
could encounter a new type of waste during prediction that
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relies on the variety of the products. By detecting a novel
type of waste, the model could learn different types in the
future. Other critical applications are in the medical domain.
Providing the capability to reject the unknown will help
reduce false positive rates, which improves diagnosis.

The incapability of deep neural networks to identify
unknown classes is due to the popular Softmax layer, as out-
put probability that does not account for the unseen classes.
It makes a model recognize the world that has been trained.
Relying on current approaches may lead to incorrect predic-
tions or overconfidence (a higher probability is assigned to a
particular class) in unknown classes [6].

Many studies address this issue by introducing Open
Set Recognition (OSR) [7], which is the relationship
between novelty detection and multi-class recognition [8].
An additional risk to the standard empirical risk in machine
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learning is called open-space risk, where the model risks
recognizing unknown classes as known classes. The model
should reduce this risk in open-set problems and become the
main objective. The unknown label dataset could be used to
reduce the risk. However, it is problematic due to the infi-
nite number of unknowns. Hence, utilizing available classes
for identifying unknowns should be studied to minimize
empirical risk (known class) and open-space risk (unknown
class).

Unfortunately, most evaluations inOSR research have used
experimental datasets, with MNIST, CIFAR10, CIFAR50,
and/or TinyImageNet being the most popular [9], [10], [11],
[12], [13], [14], [15], [16]. Only a few studies have used other
datasets when constructing an open-setmodel [17], [18], [19],
but these approaches may be ineffective when dealing with
real-world applications in a specific domain.

In the CIFAR10 dataset, the class consists of vehicles and
animals which could become contradictory in terms of the
domain. In CIFAR100, the domain includes animals, food,
flowers, household objects, nature scenes, people, and vehi-
cles, which are not domain-specific. ImageNet also utilizes
a broad domain. In some real-world applications, a specific
domain is more useful, e.g., food, waste, medical images,
or species. Thus, we conducted our study using a domain-
specific dataset.

Alternatively, pre-trained deep learning models using
transfer learning are common when enhancing performance
in real-world cases [20], [21], [22]. This due to the utilization
of the pre-trained parameters enhancing generalization of
the targeted task. Yet, the effect of transfer learning when
making models open to various proposed open-set techniques
remains unclear as it has a generalization knowledge that
could be employed to detect open set. This motivates us to
employ transfer learning in OSR to domain-specific problems
such as food, waste, pets, birds, and medical images. With
this experimentation, the actual performance of OSR can be
evaluated.

Additionally, the parameters in many open-set classifiers
may be sensitive to the problem and may affect the perfor-
mance of rejecting unknown classes. For instance, in the
prototype-based deep neural networks proposed by [14],
distance-based cross-entropy loss (DCE) and prototype loss
(PL) require parameters to be adjusted. In DCE, distance is
weighted by a predefined parameter γ that could affect the
classification results. The importance of PL during training is
affected by parameter λ. These two losses behave similarly,
which pushes the feature vector toward its prototype. Adjust-
ing both parameters to the target problem will affect open-set
performance.

Based on these issues, we propose hyperparameter opti-
mization to adjust the parameters of the open-set classifier
to improve its performance in rejecting unseen classes. Evo-
lutionary simulated annealing (EvoSA) approach has been
chosen for the optimization as it performs better than the
popular Bayesian Optimization. EvoSA could find the deep

learning architecture with a smaller number of parameters
and latency compared to simulated annealing and bayesian
optimization [23]. EvoSAworks by accepting a bad candidate
solution followed by a recombination process after the simu-
lated annealing which yields a better solution than bayesian
optimization with the same number of objective evaluations.
Moreover, the strength of the movement in searching for each
hyperparameter can be controlled by a parameter in EvoSA.
This level of movement is helpful in adjusting the movement
of unique hyperparameters in open-set recognition for finding
optimal open-set hyperparameters.

We employ prototype-based neural networks to design an
open-set deep neural network as it offers interoperability of
the recognition decision of the open set. We can assume that
unseen classes should be at a distance from the known pro-
totypes. To achieve this, the model should learn to generate
prototypes far away from each other, which could be attained
through contrastive learning. Even though contrastive learn-
ing is mostly studied through self-supervised learning by
providing negative samples [24], it has not been studied with
prototype-based neural networks for OSR. As the prototype
is a representation of the samples, performing contrastive
learning on only the prototypes (without using feature vectors
of the samples) is plausible. Therefore, contrastive prototype
loss is proposed in this paper so that the prototypes have a
significant margin among them.

As humans recognize novel objects, multiple views could
be helpful [25]. At the technical level, we use rotational
geometric transformation to extract additional perspectives
of the input images and use the combined features during
prediction and training. Changing the orientation by rotation
could enable the model to grasp the invariant property of the
object in terms of area and angle. Therefore, we propose
quad-channel contrastive prototype networks (QC-CPN)with
evolutionary simulated annealing to open the deep neural
networks model to the world.

The main contributions of this paper are as follows:
1) We present the evaluation of each Open Set

Recognition (OSR) algorithm using hyperparameter
optimization to gain its true performance for each
domain-specific dataset.

2) We propose contrastive prototype loss that utilizes pro-
totypes only in each mini-batch of training samples.

3) We propose using a quad-channel input image repre-
sentation through geometric rotations to derive a better
representation for rejecting unseen classes.

II. RELATED WORK
A. OPEN-SET RECOGNITION
OSR is amulti-class classification techniquewhere the classi-
fier can recognize unseen classes byminimizing open-set risk
evaluated on unseen classes during testing phase [7]. Open-
set risk is defined by minimizing the open-space risk (the
risk of unseen class data recognized as known) and empirical
risk that utilizes collected training data in known and unseen
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samples (associated with data testing). Minimizing empirical
risk is the main objective of conventional machine learning.
The risk is alleviated by adopting an available training set to
assess the true distribution of data. Meanwhile, open-space
risk tries to avoid unseen classes being recognized as known
classes.Merely reducing empirical risk does not meliorate the
open-space risks.

To solve the OSR problem, both empirical and open-space
risks are minimized. Unseen classes have to be combined
with the test set, and these additional classes (unseen) can
be utilized during training. However, state-of-the-art tech-
niques use the set to find appropriate thresholds [16], [17]
and do not employ it during training. Furthermore, generative
approaches use the test set for assessment only [26].

An early attempt at OSR based on deep neural networks
was conducted by Bendale and Boult [6] who introduced
OpenMax as a replacement for Softmax. Here, The vectors
from the penultimate layer are calibrated and a new element
is added to represent an unknown class. Weibull distributions
are employed to fit tail distances from the vector to its mean.
However, two-stage tasks are required to construct OpenMax
layers, i.e., training and calibration (including mean calcula-
tions). Moreover, considering class-incremental settings, the
approach requires the re-computation on the second task.

Another study employed a modified conditional generative
adversarial network (GAN) to synthesize new unknown sam-
ples. Using the same technique as OpenMax, i.e., fitting the
Weibull distribution [9]. This technique also involved an addi-
tional mean activation vector for the unknown. MNIST [27]
and HASYv2 [28] were used for the main experiment, which
showed that the proposed method performed better than
Softmax, generative Softmax, and OpenMax. Unfortunately,
no apparent improvement was observed when applied to
natural images using ImageNet12.

Synthesizing new unknown examples based on the
assumption of counterfactual settings was proposed by [11]
using an encoder-decoder GAN. At first, latent vectors close
to its known classes were optimized so they did not belong
to any known classes indicated by low probability value.
Then, the generated samples were treated as open set data.
The area under the ROC (AUROC) curve metrics showed
that the proposed method could achieve a higher value
compared to other studies. However, the improvement was
small with a 0.4% AUROC score on CIFAR-10 compared to
OpenMax.

OpenMax was extended by Yoshihashi et al. [15] by refin-
ing latent representation using encoder-decoder architecture,
and additional latents for each layer were proposed for OSR.
These latents were jointly concatenated with the label vector.
The proposed technique illustrated higher F1 scores com-
pared to supervised only and LadderNet on Omniglot and
MNIST datasets. The authors did not compare their proposed
approach with the latent vectors from the autoencoder to
detect unknown classes, which could justify the effectiveness
of the proposed technique.

Meanwhile, Chen et al. [17] proposed a different view
of learning by classifying samples using reciprocal points.
These points are the centroid of the classes but far from their
sample’s feature vectors, and they represent the dissimilar-
ity of samples from other known classes. The prediction is
performed by calculating the distance from the feature vector
to the reciprocal point, and the maximum distance produces
the highest probability. The AUROC score was higher than
prototype learning. Furthermore, the study was extended by
employing GAN to generate unknown samples [26]. How-
ever, the justification of the prediction based on reciprocal
points is not appropriate for OSR, as the dissimilarity of
other classes does not provide an actual representation of the
recognized class. Furthermore, when a new class is added, the
approach needs a revision of all reciprocal points to perform
a prediction, as a new class provides additional dissimilarity
to the respective reciprocal points.

In a study by Schlachter et al. [13], the unknown set
could be derived using a misclassified set or low probability
prediction. This set provides additional unknown classes. The
results showed that dynamic intra-class splitting provides a
better AUROC compared to counterfactual image generation
and the Weibull support vector machine. However, when the
model’s prediction was nearly faultless, only a few sets could
be trained as unknown for the K+1 class.

B. PROTOTYPE LEARNING FOR OSR
Prototype learning for the discriminative representation of the
recognition model using a deep neural network was intro-
duced by Yang et al. [14]. The neural network architecture
was modified at the output layers, and could be interpreted
as a feature vector. Additional trainable vectors that behave
as the prototype of the respective class were added outside
the neural networks. These vectors were updated for each
computed loss via DCE. Generalized prototype loss was also
proposed to learn each prototype close to its samples. Adding
more weight to this loss contributed to a more distinctive
representation. The output probability or distance to its pro-
totype was then tuned to find the desirable threshold for
rejecting unidentified classes during testing. A One-vs-all
strategy was also proposed for prototype learning [29]. Using
this technique, we can assume that unseen classes are far from
the prototypes.

Contrastive learning on the prototypes was not considered
in these studies. We argue that to identify unseen classes,
the prototype should learn how dissimilar it is from other
prototypes. By learning dissimilarity, the model knows the
differences between all prototypes. When the model predicts
any sample, this dissimilarity leads to better rejection and
can be interpreted in prototype-based neural networks as each
prototype being distant.

Prototype-based learning was developed by Shu et al. [18]
with amultifold loss function consisting of classification loss,
prototype loss, and prototype radius loss. The first loss uti-
lized the cross-entropy loss of samples’ features. Meanwhile,
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FIGURE 1. Quad-Channel Contrastive Prototype Networks (QC-CPN) architectures during training and prediction.

a radius was learned for eachal category that restricted the
prototype’s value. Three thresholds were needed to reject
unknown classes: the acceptance threshold, rejection thresh-
old, and distance-based threshold. The experiment showed
that prototype radius loss was more accurate at rejecting
unknown classes. This technique is only proven in action
recognition tasks. The utilization of other open-set techniques
for this domain needs more investigation.

Another study extended prototype learning using a mar-
gin [30]. The distance between samples and their prototypes
was constrained by a margin called motorial prototype frame-
work (MPF). Furthermore, the standard MPF was improved
by a GAN with an additional classifier to generate samples
that were close to unknown space. The generated samples
were trained to be close to the centers of all prototypes
which were assumed to stand in an open-set space. Their
AUROC score was competitive compared to other open-set
models. However, this method was not proven in a real world
scenario that utilized transfer learning and did not consider
the maximum distance between the prototypes.

C. CONTRASTIVE LEARNING
Contrastive learning is a representation learning type that uti-
lizes positive (similar representation) and negative (dissimilar
representation) data during training. The distance from the
sample or anchor to the data is modified by minimizing the
distance to positive data and pushing away from negative
data [31]. The most popular implementation method is uti-
lizing triplet loss [32] in deep neural networks, which is used
in many applications [33], [34].

Deriving contrastive representation by training negative
samples has proven to be effective in few-shot learning. In the
study conducted by Gao et al. [35], a prototype was derived
from the mean of the feature vectors from correctly classified

support samples, and the exponent value from cosine similar-
ity of positive samples was contrasted with other similarity
values of negative samples that manifested in their con-
trastive loss. The results showed better classification accuracy
compared to previous studies in terms of 5-way 1-shot and
5-way 5-shot. Furthermore, contrastive learning based on the
prototypewas also studied as representation learning for unla-
belled data [36]. Using the expectation-maximization frame-
work, K-means was employed in the expectation process to
construct an estimated representation from the momentum
encoder.

In a study by Kodama et al. [37], a self-supervised
technique called SimCLR was proposed, based on con-
trastive learning. The encoder network was trained first
using SimCLR, then its parameters were frozen to learn the
fully-connected layers for classification. The anomaly was
detected by using extreme value theory on the weighted
average of two derived features. TheAUROC scorewas better
on the street view house numbers (SVHN) and Tiny Imagenet
datasets; however, the comparison results may not represent
their true performance as the authors took the results directly
from the respective papers. The architecture used probably
contributed to the performance.

III. THE PROPOSED METHOD
In this section, we present the architecture of the proposed
Quad-Channel Contrastive Prototype Network (QC-CPN)
along with its prediction and training mechanisms. The
hyperparameters of QC-CPN (λ, feature dimension, learn-
ing rate, and ϵ) are tuned using the Evolutionary Simulated
Annealing (EvoSA) [23]. Each hyperparameters will be dis-
cussed in Section IV-A. We only optimize the number of
feature dimensions in one layer, not the combination of layers
as it is used in the EvoSA paper. Thus, we did not use the
flipped mutation.

VOLUME 11, 2023 48581



G. A. F. Alfarisy et al.: QC-CPNs for OSR in Domain-Specific Tasks

FIGURE 2. The illustration of the proposed loss, triplet loss, and other prototype-based loss. The grey boxes show the open-set samples, and the stars
symbol shows the prototypes. (a) triplet loss uses the three samples to learn the features; (b) prototype loss pushes the feature representation to its
representative prototype; (c) motorial margin loss provides mitigation to the feature’s sample by using a radius; (d) our proposed contrastive
prototype loss utilizes the prototype in each mini-batch of training data without using any sample and adjusts the prototypes to have a margin of ϵ.

A. QUAD-CHANNEL CONTRASTIVE PROTOTYPE
NETWORKS (QC-CPN)
1) ARCHITECTURE OF THE QC-CPN
The overall architecture of QC-CPN is depicted in Figure 1
which consists of two main components: a feature extractor
(FE) and a prototype representation. FE extracts the feature
from quad-channel inputs using a pre-trained model with
frozen parameters (MNetV3-Large) followed by fully con-
nected layers, while a prototype represents a class. Each class
has one prototype in our case which is parameterized as a
vector and initialized randomly.

Transfer learning is utilized by keeping the parameters
in the backbone of MNetV3-Large followed by the train-
ing of the fully-connected layers. The parameters in the
MNetV3-Large contain the knowledge from the ImageNet
classification task, by using the output vector from the back-
bone, the low-level features derived from diverse classes can
be utilized which could improve the generalization capability
in the open-setmodel. This utilizationwill lead to better rejec-
tion capability as the output vector from unknown classes is
obtained from the parameters of the ImageNet, which could
affect the output probability distribution.

In quad-channel views, the input image is rotated in three
ways which are 90, 180, and 270 degrees. Thus, four images
are passed as an input to the QC-CPN model. Each image
produces its feature vector concatenated as one vector to
represent the image with perspective at different angles. The
parameters in the pre-trained model are frozen to preserve its
knowledge. The fully-connected parts of the pre-trained deep
learning models, intended for previous training (ImageNet),
are replaced with one new fully-connected layer, and the
parameters on the rotated images are shared to accelerate the
training.

Meanwhile, each class has its prototype representing a cen-
troid of the class that is parameterized. The distance between
concatenated feature vectors derived from quad-channel
input and all prototypes are mapped to the probability dis-
tribution through softmax layers. The maximum probability

shows the prediction of this model. For the rejection mecha-
nism, the maximum probability is compared with the thresh-
old. A lower value will make the model identify the sample
as unseen classes. The best threshold is determined from
ROC [38].

2) QC-CPN FOR PREDICTION
Prediction is performed by calculating the Euclidean distance
between a feature from FE and the prototypes. Let x ∈ X ⊂
Rw×h×q be an image with w width, h height, and q number
of channels. Let z ∈ Z ⊂ Rn be a final feature vector with
n number of dimensions. Then, FE can be formalized as a
function which is shown in Equation (1).

fφ,θ : X → Z (1)

FE is parameterized by two parameters: φ and θ . This is
intended to differentiate functionality in a model for extract-
ing the features. Parameter φ is used to extract the vec-
tor before the fully-connected layers. It is frozen from the
pre-trained model and shared across all quad-channel inputs.
We can see this as the parameter for the pre-trained backbone.
Parameter θ is used to get the partial feature vector from an
original image and a rotated image. For rotated images, θ

is shared in producing the partial feature. The four partial
feature vectors are concatenated to produce the final feature
vector.

In the quad-channel itself, four images are used as input.
Three images are derived from the original image through
the rotation function that is defined as ri : X → X where
i ∈ {90◦, 180◦, 270◦}, e.g, r90◦ (x) means that an image x is
rotated by 90◦.
Parameter φ is used to get the feature before the fully-

connected parts. Let a ∈ A ⊂ Ru where u = 1
4n, then a

function to extract feature from the backbone can be defined
as shown in Equation (2). Beside that, a function to extract
the partial final feature with parameter θ can be defined in
Equation (3).

gφ : X → A (2)

48582 VOLUME 11, 2023



G. A. F. Alfarisy et al.: QC-CPNs for OSR in Domain-Specific Tasks

hθ : A→ A (3)

Then, the final feature extractor fφ,θ can be defined in
Equation (4). Three rotated images are produced by ri(x). All
of them, including the original one, will be passed to the gφ

to extract the feature from the pre-trained model. Afterward,
the interim feature of the four images is passed to hθ . All of
the derived vectors are concatenated through concat function.

fφ,θ (x) = concat
(
hθ (gφ(x)), hθ (gφ(r90◦ (x))),

hθ (gφ(r180◦ (x))), hθ (gφ(r270◦ (x)))
)

(4)

Let m ∈ M ⊂ Rn be the prototype and |M | = C
where C is the number of prototypes that is the same with
the number of classes, meaning that one class is represented
by one prototype. Let c be the class index. For the sake of
simplicity, φ and θ are omitted. The distance function can
be defined as shown in Equation (5) which uses L2 norm or
Euclidean distance.

d(f (x),mc) = ∥f (x)−mc∥2 (5)

The prediction through probability value can be derived
from the softmax layer based on the negative distance con-
trolled with parameter γ ∈ [0, 1] as shown in Equation (6).
Negative exponential behaves as an inverse of the distance
such that a higher probability indicates that themodel predicts
strongly into the respective particular class.

p(y|x; f ,M ) =
e−γ d(f (x),my)∑C
c=1 e

−γ d(f (x),mc)
(6)

The time complexity of the prediction of an instance of an
image isO(n2) where n is the number of partial features. The
asymptotic notation is derived from O(4 · a · b · l + 4 · n1 ·
n2 + 4 · n2 ·C) where a is the time complexity in forwarding
the image into convolution layer, b is the number of the
output feature map, l is the number of layers in convolution
part, the number 4 is the number of input, n1 is the number
of the dimension or neuron of last layer of the backbone,
n2 is the number of dimension of partial feature, and C is the
number of classes. The first terms represent the backbone,
the second term represents the partial features, and the last
term represents the distance computation for the output score.
If n1 = n2, then we will obtainO(4 ·a ·b · l+4 ·n2+4 ·n ·C).
Considering the backbone as a constant operation, we have
an upper bound of O(n2) in which the complexity of the
networks depends on the number of partial features.

3) TRAINING QC-CPN FOR OPEN-SET RECOGNITION
Training QC-CPN requires computing two losses: the dis-
criminative loss and the contrastive prototype loss. In the
discriminative loss, categorical cross-entropy based on the
distance is employed, similar to [14]. Optimizing this loss
will make a sample having a shorter distance to its actual
prototype and a longer distance to others. This loss is defined
in Equation (7). The sample of mini-batch k is denoted as

xk = {x ik}
S
i=1 with label yk = {yik}

S
i=1 where S is the total

samples in the mini-batch.

L1(xk , yk ) = −
1
S

S∑
i=1

log p(yik |x
i
k ; f ,M ) (7)

The proposed contrastive prototype loss is defined in Equa-
tion (8). This loss is intended to make each prototype rep-
resenting a particular class far from each other by a margin
which is denoted as a contrastive prototype parameter (ϵ).
Furthermore, this loss only calculates the distance based on
mini-batch, which may provide faster learning. Compared
to triplet loss that is used in many studies [39], [40], our
proposed loss function does not need to use an algorithm or
random sampling to choose the negative or positive samples
or a synthetic image. Original triplet loss requires sampling
of negative samples, which shows that randomly choosing the
samples leads to a sub-optimal solution [41]. We utilize the
prototypes only as they represent the classes. Each prototype
that belongs to the data label in the mini-batch will be forced
away. The illustration of the proposed loss and its difference
from others is shown in Figure 2.

L2(yk ) =
1
S

S∑
i=1

C∑
j=1

max(0, ϵ − d(myik ,myjk
)), yik ̸= yjk

(8)

The total loss is defined in Equation (9) where xk is the
images in the training set for mini-batch k with its associate
labels yk . The training set Xtrain and Ytrain consist of mul-
tiple mini-batch in which Xtrain = {xk}Kk=1 and Ytrain =
{yk}Kk=1 where K is the total mini-batch for each epoch. The
weight for the L2 is denoted as w1. The parameter will be
updated based on the loss of eachmini-batch of samples using
Equation (9).

L(xk , yk ) = L1(xk , yk )+ w1 · L2(yk ) (9)

The objective of the training phase is to minimize Equation
(9). Using both proposed losses, prototypes are ensured to be
far from each other with the discriminative functionality.With
optimized ϵ, open samples will have more space between
prototypes that are not identified as known classes leading
to higher rejection performance of unseen classes. Based on
the formalization, the algorithm for training is summarized in
Algorithm 1.

The time complexity for the training is O(s · n2). Since
we froze the parameters in the backbone part, updating these
parameters is unnecessary in which can be omitted. Hence,
the updating parameters are applied for partial features and
the prototypes only with complexity O(s · n2 + s · n · c). The
first term represents the operations of updating parameters
of partial features and the second term is the parameters
update of the prototypes. Hence, the complexity depends on
the number of mini-batch of samples (s) and the number of
dimensions of partial features.
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TABLE 1. Hyperparameter search settings.

Algorithm 1 QC-CPN Training Algorithm
Input : set of the mini-batch of data points or images from

the training set Xtrain with their associate labels Ytrain,
weight for prototype contrastive loss w1, number of fea-
ture dimension n, learning rate α, contrastive prototype
parameter ϵ, the strength of the distance in softmax nor-
malization γ , and total_epoch.

Output : the parameter θ and M of deep learning model h
1: i← 0
2: while i < total_epoch do
3: for each (xk , yk ) in (Xtrain,Ytrain) do
4: compute the loss L = L1(xk , yk )+ w1 · L2(yk )
5: update parameter θ by ∇θL(xk , yk ), in case of

vanilla gradient descent: θ = θ − α · ∂L
∂θ

6: update parameter M by ∇ML(xk , yk ) in case of
vanilla gradient descent:M = M − α · ∂L

∂M
7: end for
8: i← i+ 1
9: end while

B. UNKNOWN (UNSEEN) CLASS REJECTION
We simply use the maximum from the probability distribu-
tion, which is also used in out-of-distribution detection [42]
as a baseline algorithm. This value is compared with the
threshold, and a high value represents the short distance to the
corresponding prototype, which is more likely known classes
rather than unknown ones. The illustration can be seen in the
right box in Figure 1.

The threshold itself is determined through ROC, which
maps the false positive rate with the true positive rate with
various thresholds. The threshold with a low false positive
rate and a high true positive rate is chosen.

IV. EXPERIMENTAL SETTINGS
This section outlines the three aspects of our experiment set-
tings: hyperparameters, the dataset used, and the evaluation of
the model’s performance. We compare the optimized hyper-
parameters for each algorithmwith our approach to give a fair
comparison between all methods. The dataset used will be
explained along with its settings for unknown class selection.
The section concludes with a description of the metric used,

the ablation study, and the effect of the contrastive prototype
parameter.

For the computation environment, we employed the GPU
to train the model through a popular deep-learning library.
we run the experimentation using a single GPU with RTX
2060. We used the PyTorch library for implementing our
method.

A. EVOSA SETTINGS IN SEARCHING FOR
HYPERPARAMETERS
We performed hyperparameter optimization using EvoSA
to obtain the best settings in the test set before making a
comparison using the same backbone, MNetV3-Large [43],
as a feature extractor. Details of the search settings in EvoSA
are shown in Table 1. The method is the algorithm or learn-
ing technique for OSR, hyperparameters control the learning
scheme in OSR, the lower and upper bounds are the minimum
and maximum values that the solution can provide, and δ

is the parameter in EvoSA that controls the strength of the
neighboring movement for each specific hyperparameter.

The objective or cost function of EvoSA is defined in
Equation (10). The main objective is to find the hyperparam-
eter p for each method trained using training dataset Dtrain
that maximizes the AUROC score between the test dataset
of known classes (Dtest ) and the dataset containing unknown
classes (Dunknown). We only use one combination (ordered
labels) to perform hyperparameter searching and use the best
p to evaluate the different combinations of labels.

min
p

1− AUROC(p,Dtrain,Dtest ,Dunknown) (10)

The number of feature dimensions represented by the num-
ber of neurons in the penultimate layer and the learning rate
was optimized for all algorithms. In QC-CPN, CPL [14],
GCPL [14], RPL [17], and ARPL [26] γ or temperature pro-
vides the weight for the distance before outputting probability
distribution through Softmax. We argue that this parame-
ter is sensitive to the AUROC score and needs to be opti-
mized. Meanwhile, ϵ in QC-CPN shows the minimal distance
between the prototypes, and parameter λ in GCPL shows
the strength of the prototype loss [14]. In RPL, λ is a reg-
ularization term to reduce open space risk by constraining
the distance between samples and reciprocal points by a
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TABLE 2. Cost value and best hyperparameters after EvoSA.

learnable margin [17]. In the MPF [30], λ behaves simi-
larly to RPL which is the minimum margin between features
and their prototype. Meanwhile, hyperparameter optimiza-
tion is not considered for OpenMax because it involves a
two-stage approaches that utilizes a trained Softmax-based
model (the hyperparameters of the Softmax model itself have
been optimized).

B. DATASETS
The summary of the dataset used in the OSR experimentation
is shown in Table 3. The number of classes is split into two
sets for obtaining known classes and unknown classes. Mean-
while, the detailed description of each dataset is described
below.

1) Garbage6
This dataset consists of 6 different types of garbage col-
lections (i.e. six classes): cardboard, glass, metal, paper,
plastic, and trash. For evaluating open-set tasks, four
classes were selected as known and two classes were cho-
sen as unknown. In optimizing the hyperparameters, four
classes of this dataset were used as the known dataset
(from one to four). For five trials of experimentation,
we selected the classes randomly. The dataset can be found at
https://www.kaggle.com/harshul23/garbage.

2) OxfordPet
OxfordPet dataset contains images different species of
cats and dogs [44]. It consists of 37 species intended
for fine-grained object categorization. We selected the
labels from 1 to 22 for searching best hyperparame-
ters. For open-set experimentation, we selected 15 classes
as unknown. Five trials were performed with a random
combination of classes. This dataset can be found at
https://www.robots.ox.ac.uk/ vgg/data/pets/.

3) IndianFood
IndianFood dataset has images for 20 classes of Indian
cuisine. The 12 classes were selected as known samples
while other eight classes were chosen as unknown for
hyperparameter optimization. For five random trials, 12 dif-
ferent combinations of classes were used. This dataset
is available at https://www.kaggle.com/theeyeschico/indian-
food-classification.

4) CUB-200
CUB-200 is a dataset of bird species with 200 classes [45].
This dataset can be used to assess the performance of
OSR in terms of fine-grained classification. For hyper-
parameter optimization, we have chosen 120 classes and
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TABLE 3. Summary of the dataset used in the experimentation.

TABLE 4. Closed-set accuracy, AUROC, and BACCU score over 5 random trials.

considered other labels as unknown. For five trials, 120
random classes were chosen. This dataset can be found at
https://www.vision.caltech.edu/datasets/cub_200_2011/.

5) HAM10000
HAM10000 dataset has a collection of roughly 10,000
dermatoscopic images [46]. It has seven classes includ-
ing Melanocytic nevi (nv), Melanoma (mel), Benign
keratosis-like lesions (bkl), Basal cell carcinoma (bcc),
Actinic keratoses (akiec), Vascular lesions (vas), and Der-
matofibroma (df). We selected 10% of the training dataset
for validation. Four classes were selected as known and the
other three classes were used as unknown.
The OSR technique can be beneficial for medi-

cal domains which need a rejection mechanism to aid
good diagnosis. It will be harmful to the patient if the
unknown lesion is classified as a known skin lesion.
This dataset serves as a test bed for application of
OSR in medical domains. This dataset can be found
at https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/DBW86T.

C. EXPERIMENTATION EVALUATION
Weused the best hyperparameters for eachmethod to perform
five random trials. We evaluated performance based on the

mean and standard deviation of closed-set accuracy, AUROC
(known and unknown classes) [38], and balanced accuracy
(BACCU) [47]. Closed-set accuracy is important to assess
the model’s capability in categorizing the samples for known
classes. AUROC is used to assess the model’s performance
in rejecting unknown classes without any dependency on
the threshold. Meanwhile, as the proportion of known and
unknown is unbalanced, BACCU assesses true performance
by fixing the threshold derived from the ROC curve. The
BACCU equation is shown in Equation (11), where TP is
the number of true positive predictions, P is the total number
of samples in the positive class (known class), TN is the
number of true negative predictions, and T is a total number
of samples in the negative class (unseen class). The results
for the best hyperparameters are discussed in Section V-A,
and performance in the five random trials is discussed in
Section V-B.

1
2
(
TP
P
+
TN
N

) (11)

We also performed an ablation study to investigate the
effect of the proposed method, and this is discussed in
Section V-C. Some components of QC-CPN were removed,
resulting in the following models:
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TABLE 5. Comparison of cost value and best hyperparameters derived from EvoSA by removing some components of QC-CPN.

• Quad-channel with a Softmax layer (QC-S): The proto-
types and contrastive prototype loss were removed and
the quad-channel was used. This model was designed to
examine performance without prototypes and revealed
the effect of the quad-channel based on the geometric
transformation.

• Quad-channel prototype without contrastive learning
(QC-PN): This model did not use contrastive prototype
loss and was meant to examine the effect of the L2 in
QC-CPN.

• One-channel contrastive prototype networks (OC-CPN):
This model was designed to examine the effect of the
quad-channel using only one channel perspective with-
out a rotation feature.

• Quad-channel with shared parameters for all partial
features (QC-CPN*): This QC-CPN model shared all
parameters for all orientations of the inputs. The model
observed the effect of parameter separation between the
original image and rotated images.

• Softmax with rotated data augmentation (Softmax*):
The standard deep learning model with data augmen-
tation was compared, and the effect of concatenated
features was observed and compared to the rotation
with data augmentation (using the same rotation). The
augmentation increased the total samples of data training
four times.

The effect of our proposed contrastive prototype loss and
different rotation degreewere also studied andwere discussed
in Section V-D and V-E respectively.

In contrastive prototype loss, we tuned the different values
of ϵ from 0 to 200 in steps of 20 and analyzed the AUROC
performance over five domain-specific datasets with five
different combinations of classes similar to the five random
trials. Using the same combinations, we also observe the
effect of different rotation degrees, which are 30, 60, and
90 degrees that are used to generate additional images for
quad-channel features.

V. RESULTS AND DISCUSSION
A. OPTIMIZED HYPERPARAMETERS
The important hyperparameters for each algorithm were opti-
mized using EvoSA to maximize the performance of discrim-
ination between known and unknown classes via the AUROC
metric. The best hyperparameters with the best costs are
presented in Table 2. Using this hyperparameter will give us
insight into the actual performance of each OSR algorithm in
domain-specific tasks.

Overall, QC-CPN has the least cost across domain-specific
datasets (except HAM10000). In the Garbage6 dataset, the
MPF provides a competitive cost compared to QC-CPN.
In OxfordPet, most methods yield a competitive perfor-
mance in which RPL has roughly 0.01 lower performance
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FIGURE 3. The effect of contrastive prototype parameters over different domains and values.

TABLE 6. Performance over ablation study scenarios of QC-CPN with five random trials.

than QC-CPN. We observed that the MPF had the worst
performance, which was different when applied to Garbage6.
In IndianFood and CUB 200, QC-CPN produced significant
results in terms of cost value compared to other methods.
In HAM10000, the least cost was achieved by RPL, while
Softmax had the highest cost. QC-CPL has the second-best
performance results in all comparison methods. Further
investigation is needed in this domain, as the problem is
potentially due to the prototype derived from the rotation of

the quad-channel input, which may not help in the related
domain.

From the observed best hyperparameter found via EvoSA,
the proposed loss in GCPL and the MPF are not essential for
maximizing the AUROC score. Parameter λ in the MPF in
the Garbage6 dataset was 0, representing the coefficient to
control the motorial margin constraint, which was considered
ineffectual in gaining optimal AUROC. The same hyperpa-
rameter value for λ was found in GCPL on OxfordPet and
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CUB 200 datasets. This represents the weight of generative
loss that pushes the representation of the embedding sample
close to its prototype. We argue that this parameter is inef-
fective in constructing a better representation for bounding
the open-set samples if used with DCE because it behaves
the same way. Minimizing DCE will attract the embedding
sample close to its prototype, similar to the λ or prototype
loss in GCPL.

In the IndianFood dataset, GCPL needed zero value forλ in
DCE (discriminative loss), which is considered unnecessary
for rejecting unseen classes. This suggest that the generative
approach may help identify unseen classes rather than dis-
criminative ones, as multi-class classification and identifying
unseen classes are probably not directly related. One possible
approach for future work is to consider multi-task learning for
accuracy and rejection, which can be seen as two different
tasks with shared parameters in the neural networks that
utilize an advanced generative model to help identify unseen
classes.

Using the same backbone (MNetV3-Large) as a feature
extractor and the best hyperparameters, Softmax provides
competitive results with other algorithms that were underes-
timated in the literature [12], [26], [30], [37]. In Garbage6,
CPL and GCPL are inferior to Softmax, and in the OxfordPet
dataset, CPL, ARPL, and the MPF have higher costs than
Softmax. In IndianFood, only CPL is worse than Softmax.
Furthermore, in CUB 200, most algorithms are competitive
with Softmax except QC-CPN. This shows that in real-world
applications in domain-specific tasks using transfer learning,
Softmax is still considered a good baseline.

B. OSR PERFORMANCE
The statistical score of OSR performance for each algorithm
in the five random trials is shown in Table 4. In terms of
closed-set accuracy, Softmax had the highest score in three
datasets (OxfordPet, IndianFood, and CUB-200). OpenMax
had the same score due to meta recognition that utilized the
trained Softmax-based model. GCPL had the lowest score
in the IndianFood dataset because the γ parameters had
zero weight, which avoided the optimization of cross-entropy
loss. Overall, QC-CPN had the highest mean of closed-set
accuracy.

In terms of the AUROC score, the proposed QC-CPN pro-
duced the highest value in themost domain-specific dataset as
shown in the mean value. In HAM10000, RPL gave its peak
performance in distinguishing known and unknown classes.
For OpenMax, the score for all datasets was lower compared
to the original model in Softmax; therefore, meta recognition
via Weibull distribution was not as effective and actually
reduced the original performance.

Regarding the BACCU score, QC-CPN was superior com-
pared to other methods in the most datasets, and Softmax
produced a competitive score. As shown in the mean col-
umn in Table 4, QC-CPN has a significantly higher score
compared to other open-set methods. Furthermore, Softmax
had a competitive baseline and a higher score than the

popular OpenMax, which significantly reduced the perfor-
mance of the canonical Softmax in the OxfordPet, Indian-
Food, CUB-200, and HAM10000 datasets by roughly 0.13,
0.09, 0.17, and 0.20, respectively. This shows that OpenMax
is not a suitable replacement for Softmax when rejecting
unseen classes in domain-specific tasks. We suggest recon-
sidering OpenMax as a good baseline when dealing with
domain-specific tasks using a pre-trained model.

C. ABLATION STUDY
The best hyperparameters of ablated QC-CPN and Softmax
with data augmentation (Softmax*) are shown in Table 5.
Softmax* had the highest cost in most datasets (Garbage6,
IndianFood, and CUB 200) compared to other components.
Increasing data using different orientation does not signif-
icantly increase the capability of rejection. Furthermore,
in the OxfordPet and CUB-200, Softmax* underperformed
by approximately 0.07 and 0.09, respectively, compared to
standard Softmax.

Extending the input model by quad-channel in Softmax
(QC-S) increased the AUROC through lower cost results in
most datasets with the best hyperparameters. Moreover, the
cost could be reduced by changing the output of QC-S with
prototype learning (QC-PN).We also observed that using one
channel only (OC-CPN) had a higher cost than QC-PN in
most datasets. In OxfordPet and HAM10000, the differences
were insignificant.

QC-CPN* had a competitive cost compared to QC-PN in
the Garbage6 and Oxfordpet datasets. In this case, contrastive
prototype loss with shared parameters for all partial features
did not provide significant results. In IndianFood, it had the
opposite effect and had higher costs compared to QC-PN.
However, in the CUB-200 and HAM1000 datasets, QC-CPN
produced a lower cost compared to QC-PN. Meanwhile,
QC-CPN had competitive costs in all datasets, with the lowest
costs in the IndianFood and CUB-200 datasets.

Table 6 presents the performance of five random combina-
tions of known and unknown classes. These results reveal the
excellent performance achieved by QC-CPN for all datasets.
For all metrics, QC-CPN performed the best in most datasets,
as shown in the mean column. The performance varies for
closed-set accuracy, and no single method performed the best
on most dataset. From these results, Softmax* produced the
worst performance, showing that data augmentation alone
cannot substantially improve performance.

D. THE EFFECT OF CONTRASTIVE PROTOTYPE
PARAMETER (ϵ)
As shown in Figure 3, the value of ϵ effected the performance
of rejecting unseen classes. On all datasets, using ϵ = 0 for
the model revealed that the mean AUROC score was not
the best performance. There exist a good performance when
ϵ > 0. We also observed that incorrectly settings the param-
eter values reduced performance compared to without using
contrastive prototype loss.
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FIGURE 4. The effect of different degrees of rotation on the different datasets in QC-CPN. The horizontal axis shows the different degrees while the
vertical axis shows the performance of different metrics at the same scale (higher is better).

In Garbage6, ϵ ≈ 100 was a good parameter. After this
value, the mean AUROC score fell at ϵ = 120 and increased
afterward. In OxfordPet, ϵ between 40 and 60 provided
a good mean AUROC, and as the number increased, the
performance gradually decreased. In this dataset, the high
value of ϵ significantly reduced the capability of rejecting
unseen classes, as shown in the Figure at ϵ = 200. In the
IndianFood dataset, ϵ between 100 and 120 provided the
best score. Increasing the value over 120 would potentially
reduce the model’s performance. Meanwhile, in CUB-200,
the best performance was clearly shown when ϵ was between
80 and 100. Increasing this value over 120 drastically reduced
the performance. In HAM10000, ϵ = 180 performed well
compared to the others. With this trend, there is a possibility
of better performance with ϵ > 200.

E. ROTATION EFFECT
The plot between rotation degree and different metrics
(closed-set accuracy, AUROC, and BACCU) is shown in
Figure 4. This degree is used to synthesize the additional three
images, e.g., for 90 degrees, the images will be rotated with
90, 180, and 270 degrees.

For the most dataset, it was observed that 90 degrees pro-
vide the highest score in most dataset. In IndianFood dataset,
60 degrees provide the highest performance for all metrics.
These empirical results indicate the importance of the choice
of rotation degree for different cases.

The figure also shows that generating additional features
from rotation could enhance the performance of the models.
With cautions that the choice of rotation degree is important.

In the Garbage6 dataset, setting 120 degrees as the basis could
not provide higher performance than using without the quad-
channel feature, no additional features, (OC-CPN) as well as
the HAM1000 dataset. Further study is necessary to assess
whether the choice of rotation degree is similar in the same
domain or not. Wrongly set the rotation degree potentially
could reduce the performance.

VI. CONCLUSION AND FUTURE STUDY
This paper presents a simple yet effective technique to
address the open-set problem in real-world applications in
domain-specific tasks. We propose using multiple views at
the input level to derive a strong representation through the
quad-channel by geometric rotation with contrastive pro-
totype loss. The extensive experimentation with hyperpa-
rameter optimization using evolutionary simulated annealing
and practical approaches using transfer learning with the
same backbone reveals that our approach outperforms state-
of-the-art techniques in terms of rejecting unseen classes.
Quad-channel contrastive prototype networks could become
a strong baseline for domain-specific tasks in the future. Our
approach needs contrastive prototype parameters to be tuned
first to obtain peak performance.

For future study, we will explore multiple views with
contrastive learning on the prototype levels and data lev-
els of the feature vector, which may improve open-set
performance. Additionally, recognizing unseen classes in
domain-specific problems will be a good direction for future
work. Recognizing two different unseen classes in the domain
and out-of-domain interests in deep neural networks could
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improve the model to learn continually with a relevant
training set.
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