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ABSTRACT
In this paper, an Improved version of the Multi-Trial Vector-based
Differential Evolution (IMTDE) algorithm is proposed and adapted
for clustering data. The purpose here is to enhance the balance
between the exploration and exploitation mechanisms in MTDE by
employing Gaussian crossover and modifying the sub-population
distribution between the strategies. Results show that IMTDE is
superior to the compared algorithms in most 19 datasets used. The
code is available here: https://github.com/parhamhadikhani/IMTDE-
Clustering.
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1 INTRODUCTION
Multi-trial vector-based differential evolution (MTDE) [2] is an
improvement of Differential Evolution (DE) variant. In DE, the
population consists of a number of vectors, where each vector
represents a potential solution to the optimization problem. The
goal of DE is to generate a new solution for each target vector
(current generation) that moves towards the optimal solution using
a trial vector. A trial vector is an offspring obtained based on the
crossover and mutation operations of two random vectors and a
target vector.

Since DE is highly dependent on the production of a trial vector,
MTDE presents three strategies, consisting of representative based
trial vector producer (R-TVP) to enhance the diversity of solutions,
local random based trial vector producer (L-TVP) for proper balance
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of exploration and exploitation as well as rapid convergence, and
global best history based trial vector producer (G-TVP) to escape
from local optimum. For these reasons, we adapt MTDE to cluster
data in this paper. Unlike MTDE, we employed Gaussian crossover
in strategies R-TVP and G-TVP and modified the distributing policy
to improve the exploitation and exploration abilities in our work.
The aim of this research is to investigate the ability of the proposed
Improved MTDE (IMTDE) to cluster data with different dimensions,
shapes and sizes, and compare it with other algorithms.

In MTDE, inferior solutions that have information about visited
areas are kept in a repository called lifetime archive. The size of this
repository is equal to the population of vectors. If the repository
is full, the old vectors are replaced with new vectors. The MTDE
algorithm begins with defining a sub-population distribution policy
called "winner-based distributing", to distribute the population be-
tween the three strategies. In the first iteration, one of the strategies
is selected as the best strategy by default. For later iterations, the
strategy with the highest improvement rate in the previous gener-
ation compared to other strategies is selected as the best strategy.
The improved rate of a strategy 𝑥 is calculated from the Eq.(1).

𝐼𝑅𝑥 =
𝐼𝑉𝑥

𝑁𝑥
(1)

𝐼𝑉𝑥 is the number of improved vectors by strategy 𝑥 and 𝑁𝑥 is the
number of populations allocated to strategy 𝑥 .
To better distribute the sub-population between the strategies and
improve the balance between exploration and exploitation, the
distributing policy in MTDE (Eq.(1)) is modified to Eq.(2) in IMTDE
to allocate more populations for exploration in the early stages and
to increase the number of population to exploit in the final stages
over time. Such treatments over time is not done originally.

𝐼𝑅𝑥 =


𝐼𝑉𝑥

𝑀𝑎𝑥𝐼𝑡𝑒𝑟

𝑁𝑥
𝑖 𝑓 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐿 −𝑇𝑉𝑃

𝐼𝑉𝑥
𝑀𝑎𝑥𝐼𝑡𝑒𝑟−𝑖𝑡𝑒𝑟

𝑁𝑥
𝑖 𝑓 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑅 −𝑇𝑉𝑃 𝑜𝑟 𝐺 −𝑇𝑉𝑃

(2)

Where𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is number of iterations, and 𝑖𝑡𝑒𝑟 is the counter of
iterations.
The amount of dedicated population for each strategy is calculated
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based on Eq.(3).

𝑁𝑥 =



𝑁𝑤𝑖𝑛 = 0.6 × 𝑁, 𝑁𝑙𝑜𝑠𝑒 = 0.2 × 𝑁, if R-TVP or L-
TVP have the
highest 𝐼𝑅𝑥

𝑁𝑤𝑖𝑛 = 0.2 × 𝑁, 𝑁𝑙𝑜𝑠𝑒 = 0.4 × 𝑁, if G-TVP
have the high-
est 𝐼𝑅𝑥

(3)

Where, the population size (𝑁 ) of the best strategy is calculated
based on 𝑁𝑤𝑖𝑛 and the population size of the other two strategies
are calculated based on 𝑁𝑙𝑜𝑠𝑒 .
In the R-TVP, the target vector 𝑥𝑖 is moved based on a random vec-
tor in lifetime archive 𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 and two vectors 𝑥𝑖𝑏𝑒𝑠𝑡 and 𝑥𝑖𝑤𝑜𝑟𝑠𝑡

that have the best and worst fitness values respectively (Eq.(4))
among the 𝑁𝑅−𝑇𝑉𝑃 (Eq.(4)). The procedure of G-TVP (Eq.(7)) are
similar to R-TVP except that in G-TVP, the global best vector 𝑥𝑔𝑏
is mutated based on two random vectors from population of G-
TVP (𝑁𝐺−𝑇𝑉𝑃 ). To improve the ability of MTDE to exploit and deal
with non-linear clusters, the Gaussian distribution is employed as
crossover operation in IMTDE for both strategies R-TVP and G-
TVP. Trial vector (𝑢𝑖 ) is obtained by using Gaussian-based crossover
of two transformation matrices M and its binary inverse 𝑀 with
the 𝑥𝑖 and the mutant vector in Eq.(5). M with 𝑁 × 𝐷 dimensions
can be constructed from𝑀𝐷×𝐷 , which is a lower triangular matrix
with the values of one, by replicating the square matrix 𝑁

𝐷
times in

𝑀𝑁×𝐷 . The remaining rows of𝑀𝑁 are filled with the initial rows
of the square matrix. Afterwards, the rows of𝑀𝑁×𝐷 are permuted
randomly.𝑀 is obtained by replacing inverse boolean value of each
element in M.

𝑣𝑖𝑅−𝑇𝑉𝑃
= 𝑥𝑖+𝑓𝑖×(𝑥𝑖𝑏𝑒𝑠𝑡 −𝑥𝑖 )+𝑓𝑖×(𝑥𝑖𝑤𝑜𝑟𝑠𝑡

−𝑥𝑖 )+𝛼1×(𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒−𝑥𝑖 )
(4)

𝑢𝑖𝑅−𝑇𝑉𝑃
= (𝑥𝑖 ×𝑀 + 𝑣𝑖 ×𝑀) ×𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, ℎ) (5)

𝑣𝑖𝐺−𝑇𝑉𝑃
= 𝑥𝑔𝑏 + 𝛼2 × (𝑥𝑟1 − 𝑥𝑟2) (6)

𝑢𝑖𝐺−𝑇𝑉𝑃
= (𝑥𝑖 ×𝑀 + 𝑣𝑖 ×𝑀) ×𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, ℎ) (7)

𝛼1 = 2 − 𝑖𝑡𝑒𝑟 × ( 2
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

) (8)

ℎ𝑖+1 = ℎ𝑖 − ( 1
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

) (9)

where𝑓 is a scale factor calculated by Cauchy distribution [4], h is
the standard deviation of Gaussian distribution and according to
Eq.(9) is linearly reduced on each iteration, 𝛼1 is a coefficent com-
puted by Eq.(8). In the strategy L-TVP, unlike two other strategies,
the trial vector is obtained based on individual learning rather than
evolution, hence it does not need a crossover and is calculated as
follows:

𝑣𝑖𝐿−𝑇𝑉𝑃
= 𝑥𝑖 + 𝑓𝑖 × (𝑥𝑟1 − 𝑥𝑟2) + 𝛼2 × (𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 − 𝑥𝑖 ) (10)

𝛼2 = (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑓 𝑖𝑛𝑎𝑙) × (𝑀𝑎𝑥𝐼𝑡𝑒𝑟 − 𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)𝜇 (11)

where 𝑥𝑟1 and 𝑥𝑟2 are two random vectors in the population of L-
TVP (𝑁𝐿−𝑇𝑉𝑃 ), 𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 is a random vector from lifetime archive,
𝛼2 is a coefficient calculated by Eq.(11). In addition, initial and final
are the initial and final values of the control parameter 𝛼2 set by
the user and, 𝜇 is the dimension of vectors.

Figure 1: Illustration of IMTDE clustering. First, vectors are
initialized randomly. The fitness value of all vectors is then
evaluated and the global best is determined. Using modified
winner-based distributing, vectors are distributed between
three sub-populations randomly. Trial vectors are produced
in each sub-populations. New generations are updated based
on produced trial vectors. To maintain population diversity,
inferior solutions are kept in the lifetime archive at each
generation. Finally, the global best vector is selected as the
final clustering result after reaching the stop criteria.

In the selection phase, trial vectors produced by each strategy
are compared with their corresponding target vectors to update the
population. If the trial vector has a better fitness value, it replaces
the target vector and the target vector is stored in the lifetime
archive. Otherwise, the target vector remains unchanged. Finally,
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after reaching the termination condition of iteration, the global
vector 𝑥𝑔𝑏 is selected as the final optimal solution.

2 IMTDE CLUSTERING
Each vector in IMTDE represents k cluster centroids and the struc-
ture of each vector 𝑥𝑖 is shown below:

𝑥𝑖 = (𝐶𝑖1, . . . ,𝐶𝑖 𝑗 , · · · ,𝐶𝑖𝑘 ) (12)

Where 𝐶𝑖 𝑗 represents the 𝑗𝑡ℎ cluster centroid in the 𝑖𝑡ℎ vector of
cluster. Thus, the population size of vectors represents the number
of possible clustering solutions. Sum of Square Error (SSE) is used
as the fitness function to evaluate the clustering quality of each
vector. This function is used to measure variation within a cluster
and is calculated as follows.

𝑆𝑆𝐸 =

𝑘∑︁
𝑗=1

∑︁
∀𝑦∈𝐶 𝑗

∥𝑦𝑖 −𝐶 𝑗 ∥2 (13)

𝑦𝑖 is a data point belonging to the cluster 𝐶 𝑗 . Each vector is eval-
uated based on SSE at each iteration of clustering, where smaller
values are favored. The cluster centroids in each vector are up-
dated by one of the three strategies in the MTDE algorithm to
improve clustering. The proposed clustering algorithm is shown in
Algorithm 1. The MTDE clustering is illustrated in Fig. 1.

Algorithm 1: IMTDE Cluster Algorithm
Input: D={𝑦1,𝑦2,. . .,𝑦𝑛 } //Set of data points
𝑘 //Number of desired clusters
Output: Set of 𝑘 clusters from global best vector

1 Initialize a population of vectors with random centroids in
the search space

2 for iter=1 to the Maxiter do
3 if iter==1 then
4 Consider R-TVP as best strategy
5 else
6 Determine the best strategy in previous generation

using Eq.(??)
7 Distribute vectors using Eq.(3)
8 for each strategy 𝑥 (𝑥 can be R-TVP, L-TVP or G-TVP) do
9 for 𝑥𝑖 in 𝑁𝑥 do
10 Based on chosen strategy 𝑥 , use Eq.(5),(6) or (7)

accordingly for producing a trial vector
11 Evaluate fitness value of 𝑥𝑖 using Eq.(13)
12 Update 𝑥𝑖
13 Update lifetime archive
14 Assign each data point 𝑦𝑖 to the cluster with the

nearest centroid based on euclidean distance

15 Choose the vector with the best fitness value of all the
vectors as the global best vector (𝑥𝑔𝑏 )

16 Return 𝑥𝑔𝑏

Figure 2: Comparison of the performance of IMTDE and
MTDE based on the worst, best, and average accuracy for all
datasets

2.1 Experiment
For a comprehensive evaluation of the proposed clustering algo-
rithm, IMTDE has been compared with twelve well-known algo-
rithms on 19 datasets [1]. The comparison of results for each dataset
is based on the best solution found in 30 different runs for each
algorithm. The main parameters and their values in IMTDE clus-
tering algorithm are: Maxiter=200, initial=0.001, final=2, h=1 and
number of vectors=200.

2.2 Results and Discussion
Fig. 2 shows a comparison of the worst, best, and average accuracy
values between MTDE and IMTDE. The figure indicates IMTDE
produced higher accuracy than MTDE In most datasets, which gave
better outcomes than MTDE. On the one hand, this improvement is
due to control employed on the population distribution over time
that prevents early convergence and creates a balance between
global and local search. On the other hand, in the datasets with
high overlap and complexity, such as Spiral, Flame, Banana, Jain,
and Digits, IMTDE has significantly improved performance MTDE.
It is due to the Gaussian distribution in MTDE to map the original
non-linear data into a higher-dimensional space. They become sep-
arable and reduce overlap between data points. Thus, IMTDE not
only performed better than MTDE but also increased the efficiency
of MTDE in detecting non-linear clusters.

Fig. 3 shows the impact of the strategies used on convergence
on dataset Dermatology. Using all three strategies together has
resulted in a good convergence, avoiding a local optimum trap,
compared to the other combinations, with the lowest SSE value at
around iteration 200. The three strategies created appropriate pop-
ulation distributions for exploration and exploitation, maintaining
a good balance between them.
Table 2 shows the results of methods on datasets in which they
outperformed others. Compared to other algorithms, IMTDE clus-
tering was superior on ten datasets (CMC, Vehicle, Aggregation,
Glass, Ecoli, Seeds, Segment, Iris, Banana, and Flame) in terms of AC.
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Figure 3: The impact of distribution policy and strategies on
convergence on dataset Dermatology

Based on NMI, IMTDE outperformed the rest on six datasets; CMC,
Glass, Segment, Seeds, and Aggregation and based on ARI, per-
formed best on eight datasets; CMC, Sonar, Vehicle, Glass, banana,
Aggregation, Seeds, and Segment. IMTDE also outperformed DE
due to multiple strategies for producing trial vector. IMTDE main-
tains diverse solutions by using lifetime archive to keep inferior
solutions, allowing the next generations to use the past experiences
and information from visited places to find the optimal solution.
However, GMM uses the expectation maximization (EM) algorithm
to find clusters, which is subjected to EM problems of slow conver-
gence and the local optimum trap when facing data with overlap-
ping clusters [3]. Thus, it had a poorer performance than IMTDE.
Table 2 indicates a significant difference between the proposed and

Table 1: The algorithms on their best-performing dataset
based on average values of AC, NMI, and ARI. IMTDE out-
performed others on a majority of datasets.

Algorithms AC NMI ARI
Birch Banana 52.37 %

Agglomerate Jain 86.05 % Jain 50.52 % Jain 51.46 %
Optics Spiral 100 % Spiral 100 % Spiral 100 %

PSO Sonar 12.17 %
Banana 46.54 %

DE Sonar 61.53 % Ecoli 74.84 %

HPSOK Digits 79.18 % Digits 74.45 % Flame 60.74 %
Ecoli 69.70 % Digits 65.94 %

GMM

Dermatology 52.18 % Dermatology 39.26 % Dermatology 21.68 %
WDBC 95.07 % Vehicle 24.70 % WDBC 81.12 %
WOBC 92.12 % WDBC 70.55 % WOBC 70.86 %
Wine 84.83 % WOBC 66.49 % Iris 90.38 %

Breast cancer 95.07 % Iris 89.96 % Wine 60.74 %
Wine 58.23 % Breast cancer 81.16 %

Breast cancer 70.61 %

IMTDE

CMC 50.33,% CMC 76.04 % CMC 7.34 %
Vehicle 49.96 % Glass 48.67 % Sonar 5.43 %

Aggregation 97.50 % Aggregation 93.48 % Vehicle 16.76 %
Glass 68.58 % Seeds 76.47 % Glass 32.53 %
Ecoli 85.89 % Segment 56.17 % Banana 50.42 %
Seeds 94.10 % Flame 54.14 % Seeds 76.32 %

Segment 60.89 % Segment 39.53 %
Iris 96.76 % Aggregation 92.10 %

Banana 88.13 %
Flame 90.76 %

GMM, MTDE, and DE clustering methods using the Kruskal–Wallis

test (p-value). Since the p-value of almost all of the datasets is less
than 0.05 (significance level) with the 95 % confidence intervals for
each median, we reject the null hypothesis and conclude there is
a significant difference between the proposed method with GMM,
MTDE, and DE. In cases where the p-value is higher than the sig-
nificant level (these cases are specified with★ in Table 2), there is
not enough evidence to reject the null hypothesis.

Table 2: Comparison of Kruskal-Wallis test (p-value) between
IMTDE and GMM, IMTDE and MTDE, and IMTDE and DE
through 30 independent runs

Datasets IMTDE vs GMM IMTDE vs MTDE IMTDE vs DE

Dermatology 0 0.01596 0.02559
CMC 0 0 0.00011
Sonar 0.63541★ 0.2311★ 0.29386★

Vehicle 0.343★ 0.0057 0.00005
Aggregation 0.00444 0.92932★ 0.00221

WDBC 0 0 0
Glass 0 0.01196 0.00071
Ecoli 0.15491★ 0.00296 0.18824★

WOBC 0 0 0
Seeds 0 0.10707★ 0.00015

Segment 0 0.05277★ 0.01054
Wine 0 0.02658 0.92932 ★

Breast cancer 0 0.01776 0
Spiral 0 0 0

Banana 0 0 0.03711
Flame 0 0 0.59456★
Jain 0 0 0.2675★

Digits 0 0 0.00927
Iris 0 0 0.00004

★ p-value > 0.05: The differences between the medians are not statistically
significant.

3 CONCLUSION AND FUTUREWORK
In this paper, an improved MTDE (IMTDE) is proposed and adapted
to cluster data. Comparing with other algorithms, IMTDE outper-
formed in most datasets because of stronger ability to find the op-
timal global and establishing a good balance between exploration
and exploitation. One very important task that can improve the
performance of IMTDE clustering is to combine it with the GMM
algorithm. It helps to cluster all the data with different shapes
properly. Other possible tasks are to examine the performance of
multi-objective clustering IMTDE. Automatically finding the op-
timal number of clusters by using IMTDE clustering is another
direction to pursue this work.
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