
1

Exploring Robot Programming with
Python

DevFest Brunei 2023
This document can be downloaded at https://ailab.space/events/devfest2023.

Contents
1 Introduction ... 2

2 Remote access the robot ... 2

3 Programming environment for Raspberry Pi... 3

4 Inputs and outputs of Raspberry Pi ... 4

5 Robot actuators ... 5

5.1 Motor teleoperation and pan-tilt camera ... 5

5.2 Buzzer... 9

6 Robot Sensors ..10

6.1 Ultrasonic (Ping) sensor for range measurement ...10

6.2 Tracker (TR) / Line Sensors for infrared line tracking ..12

2

1 Introduction

In this workshop, you will learn to program a mobile robot to perform

specific tasks both manually controlled (teleoperate) and

autonomously. You will learn the following skills:

• How to program a robot remotely, i.e., without tethered to the

robot?

• How to program a Raspberry Pi single-board computer?

• How to program the control of the actuators?

• How to program the data retrieval from the sensors?

You will use this skillset to control a mobile robot in completing a

challenge.

This workshop will use Python as the programming language.

Each participant will be provided with an AlphaBot2. There are 10

Alphabot2. If there are more than 10 participants, a few participants

will work together with one robot.

AlphaBot2 is equipped with Raspberry Pi 3. The source of power of

AlphaBot2 would be either battery or using power adapter. When

developing the programs, you will use the robot with power adapter.

2 Remote access the robot

All AlphaBot2 are connected to “robolab2” network. Please connect to

the same network as the robots.

SSID: robolab2

Password: 12345678

Each Alphabot2’s IP address is 43.11.0.2XX where ‘XX’ refers to the

Alphabot2’s label “ROBOLAB XX”. For example:

Robot label: ROBOLAB 08

IP Address: 43.11.0.208

With the VNC Viewer installed in your system, enter the IP address of

the robot into this bar. Please make sure you are on the same network.

VNC Viewer is a tool used to control the AlphaBot2 by remotely

accessing it from your machine (computer). It shows the display of

your Raspberry Pi just as it is connected as the display (e.g.,

monitor).

3

3 Programming environment for Raspberry Pi

The IDE (Integrated Development Environment) you will use in this

workshop is Thonny, which is an IDE for Python designed for beginners.

Before we get into programming the script of the robot, you will

program a simple Hello world script.

Create a new file, write the above Python command, and save the script

as hello_world.py in the provided workspace folder.

You can run the script by pressing the green play button.

4

Alternatively, you can run the script by going to workspace folder in

the file explorer, and on the menu bar, click ”Tools” and ”Open Current

Folder in Terminal” or simply pressing F4 in the workspace file

explorer. This will open a command line interface where you can run

your hello world script (python3 hello_world.py).

All your robot scripts will be saved and run from this folder. Now,

you will be ready to program the Alphabot2!

4 Inputs and outputs of Raspberry Pi

The Raspberry Pi is the brain of the Alphabot2.

Raspberry Pi uses Input/Output pins which are called General Purpose

Input Output (GPIO). These pins allow us to programmatically interact

with electronic devices, which broadly distinguished as input or

output devices

The idea of output is to send signal to a GPIO (pin) of the RPi from

within the RPi by its program. The GPIO will have an electrical

voltage of +3.3V when a High/Logic 1 is sent to it. When a Low/Logic

0 is sent to the GPIO, there will be no voltage at the GPIO. Based

on the voltage at the GPIO, an output device (e.g. a light) connected

to the GPIO will be turned ON or OFF.

The idea of input is to receive signal at the GPIO from an input

device (e.g. a sensor, a switch). The signal is in the form of

electrical voltage. Raspberry Pi is a 3.3V device. To give it a

signal of HIGH (logic 1) at its GPIO pin, an electronic device (or

circuit) needs to provide +3.3V. Providing higher voltage (e.g. +5V)

may damage the GPIO circuit of the Raspberry Pi. Many components or

5

devices designed for microcontroller (MCU) are 5V devices, i.e. their

HIGH (logic 1) is at +5V. It is important to modify the signal from

these components or devices with additional components to scale down

the voltage to +3.3V.

Below is the pin layout of the GPIO header on the Raspberry Pi.

5 Robot actuators

The goal of this section is to program the robot to control its

locomotion (maneuver) and pan-tilt the arm/stick actuator through

teleoperation (remotely). The actuators used in this section will be

the motors, servos and buzzer.

5.1 Motor teleoperation and pan-tilt camera

The Alphabot2 uses two geared DC motors to drive itself and

maneuver. This set of motors is usually referred to as the

drivetrain motors.

6

N20 micro gear motor N20 with encoder

Besides the two geared motors, the Alphabot2 uses two servo motors to

pan and tilt its camera.

SG90 micro servo motor (standard)

We will use W, A, S, D, and space bar keys for teleoperating the

driving of the robot. The arrow keys will be used to pan and tilt the

camera and X key will be used to reset the pan and tilt position.

W = Robot moving forward

A = Robot turning left

S = Robot moving backward

D = Robot turning right

[space bar] = Robot stop moving

↑ = Tilting camera up

← = Panning camera left

↓ = Tilting camera down

→ = Panning camera right

X = to reset pan and tilt position

We will first start with motor teleoperation. Let’s get started with

programming. Create a new (empty) file and save it as teleop.py.

To achieve our goal for this section, first, we need to import these

necessary packages below:

import curses

import time

from AlphaBot2 import AlphaBot2

Note:

‘curses’ is a library that supplies keyboard-handling. ‘time’ is a

python module to handle time-related tasks. AlphaBot2 library is used

to control the drivetrain motors.

7

Then, initialize this AlphaBot2 object to use the motors:

Alphabot motor object

Ab = AlphaBot2()

We will also need to initialize curse settings which handles the

keyboard:

Curses keyboard input settings

screen = curses.initscr()

curses.noecho()

curses.cbreak()

screen.keypad(True)

Then, in a ‘try’ block, using a while loop to do set W, A, S, D keys

and space bar to map with the actions:

try:

while True:

 char = screen.getch()

 # Drivetrain motors teleoperation – WASD keys

 elif char == ord('w'):

 Ab.forward(40)

 elif char == ord('a'):

 Ab.left(40)

 elif char == ord('s'):

 Ab.backward(40)

 elif char == ord('d'):

 Ab.right(40)

 elif char == ord(' '): # space bar

 Ab.stop()

Finally, a ‘finally’ block to close objects and clean up resources.

finally:

 curses.nocbreak(); screen.keypad(0); curses.echo(0)

 curses.endwin()

Run the teleop.py (sudo python3 teleop.py) and try to control the

robot with your keyboard

Next, to control pan-tilt, create a new (empty) file and save it as

pan_tilt.py. Then, import these necessary packages below:

import curses

8

import time

from PCA9685 import PCA9685

Note:

‘curses’ is a library that supplies keyboard-handling. ‘time’ is a

python module to handle time-related tasks. ‘PCA9685’ is a library to

control the Pulse-width modulation (PWM) of the servos.

Then, initialize PCA9685 object to use the servos:

Pan and tilt object

pwm = PCA9685(0x40)

pwm.setPWMFreq(50)

Afterwards, set these configurations for pan-tilt settings:

Tilt settings (up and down)

tilt_channel = 1 # Tilt motor is on channel 1 of PCA9685 mod.

tilt_pulse = 1200 # Sets the initial pulse width

tilt_pulse_step = 30 # Sets the initial step size

Pan settings (left and right)

pan_channel = 0 # Pan motor is on channel 0 of PCA9685 module

pan_pulse = 1700 # Sets the initial pulse width

pan_pulse_step = 30 # Sets the initial step size

We will also need to initialize curse settings which handles the

keyboard:

Curses keyboard input settings

screen = curses.initscr()

curses.noecho()

curses.cbreak()

screen.keypad(True)

Then, in a ‘try’ block, using a while loop to do pan-tilt using arrow

and X keys:

try:

 while True:

 char = screen.getch()

 # Pan and tilt teleoperation – arrow keys

 if char == curses.KEY_UP:

 pwm.setServoPulse(tilt_channel, tilt_pulse -
 tilt_pulse_step)

 tilt_pulse -= tilt_pulse_step

 elif char == curses.KEY_DOWN:

 pwm.setServoPulse(tilt_channel, tilt_pulse +
 tilt_pulse_step)

9

 tilt_pulse += tilt_pulse_step

 elif char == curses.KEY_RIGHT:

 pwm.setServoPulse(pan_channel, pan_pulse -
 pan_pulse_step)

 pan_pulse -= pan_pulse_step

 elif char == curses.KEY_LEFT:

 pwm.setServoPulse(pan_channel, pan_pulse +
 pan_pulse_step)

 pan_pulse += pan_pulse_step

 elif char == ord('x'): # X to reset

 pan_pulse = 1700

 pwm.setServoPulse(pan_channel, pan_pulse)

 tilt_pulse = 1200

 pwm.setServoPulse(tilt_channel, tilt_pulse)

Finally, a ‘finally’ block to close objects and clean up resources.

finally:

 curses.nocbreak(); screen.keypad(0); curses.echo(0)

 curses.endwin()

Run the pan_tilt.py (python3 pan_tilt.py) and try to control the

direction of the robot’s camera with your keyboard.

5.2 Buzzer

A buzzer is another actuator component that can be used to give audible

signal in any application. We can program to switch on the buzzer

using RPi.GPIO python library.

A buzzer

Create a new file and save it as buzzer.py.

First, import RPi.GPIO library and set the buzzer channel to 4 to

access the GPIO pin:

import RPi.GPIO as GPIO

Import time

BUZ = 4

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(BUZ, GPIO.OUT)

10

GPIO has two modes of pin-numbering scheme, BOARD and BCM. We will

use BCM mode in which we specify each GPIO by its channel number

(instead of physical pin number). Warning channel for GPIO is disable.

Since Buzzer is an output device, we will set it as GPIO.out.

Below is the function to switch on the buzzer:

def beep_on():

GPIO.output(BUZ, GPIO.HIGH) # beep on

def beep_off():

GPIO.output(BUZ, GPIO.LOW) # beep off

Now, in a ‘try’ block, we call out the beep_on function for 3 seconds

using time.sleep() function for delay then call out the beep_off

function to switch off:

if __name__ == '__main__':

 try:

 beep_on()

 time.sleep(3)

 beep_off()

We will also need to create GPIO clean up when shutting down the

program with Ctrl+c:

 except KeyboardInterrupt:

 GPIO.cleanup()

Run the buzzer.py (python3 buzzer.py) and hear the beeping sound.

6 Robot Sensors

In this section, you will learn to program ultrasonic and infrared

sensors to obtain information about the robot’s environment.

6.1 Ultrasonic (Ping) sensor for range measurement

The Alphabot2-Pi has an HC-SR04 Ultrasonic sensor. This sensor is

often called a Ping sensor. It works by emitting ultrasonic (sound)

signal (kind of send a ping signal) and detect the echo from an object

in front. By computing the time to receive the echo, we can determine

the distance (range) of the object in front (if any).

11

Now, it is time to program the ping sensor to detect the distance of

an object.

Create a new file and save it as ping.py.

First, import the necessary packages below. We will use RPi.GPIO again

to program the ping sensor.

import RPi.GPIO as GPIO

import time

Next, set the GPIO pins used for the ping sensor, which are TRIG=22

and ECHO=27. GPIO.BCM is the pin-numbering system for chosen for this

program and the warnings for GPIO is disabled. Since the ping sensor

has both input and output pins, we need to set up the pins according

to the type. TRIG pin is that emitting the signal; hence, it is set

up as GPIO.OUT with the initial signal set as GPIO.LOW, which means

no voltage is set. Lastly, as ECHO is the one that receives the echo

signal, the GPIO is set to GPIO.IN.

TRIG = 22

ECHO = 27

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(TRIG, GPIO.OUT, initial=GPIO.LOW)

GPIO.setup(ECHO, GPIO.IN)

The function below is used to determine the distance between the ping

sensor and the object detected:

def dist():

 GPIO.output(TRIG, GPIO.HIGH)

 time.sleep(0.000015)

 GPIO.output(TRIG, GPIO.LOW)

 while not GPIO.input(ECHO):

 pass

 t1 = time.time()

12

 while GPIO.input(ECHO):

 pass

 t2 = time.time()

 return (t2-t1) *34000/2

Lastly, print the distance detected from the function created above.

We also set to clean up the GPIO when the program is terminated with

Ctrl+c:

if __name__ == '__main__':

 try:

 while True:

 print("Distance: %0.2f cm" % dist())

 time.sleep(1)

 except KeyboardInterrupt:

 GPIO.cleanup()

Run the ping.py (python3 ping.py) and observe the readings printed on

the Terminal as you move an obstacle in front of the robot.

6.2 Tracker (TR) / Line Sensors for infrared line tracking

The Alphabot2-Pi has one Tracker (TR) / Line Sensors for infrared line

tracking. The Line Sensor features five analog outputs, providing data

influenced by both distance and the color of the detected object.

Objects with higher infrared reflectance (black) generate larger

output values, while those with lower infrared reflectance (white)

produce smaller values. As the sensor approaches a white line, the

values decrease. The analog output offers more precision compared to

modules with only logical outputs (HIGH/LOW). This is done within the

electronic circuit and is not programmable. Unlike ping sensors, Line
sensors only indicate if the robot is within the white surface, i.e.,

the lane.

Tracker / Line Sensor, robot infrared line tracking

Now, using the provided white paper, we can program the Line sensors

to assist the robot in detecting infrared line reflectance. Create a

new file and save it as Line_detect.py.

13

Since Line Sensors are connected using GPIO pins, we will use RPi.GPIO.

Import these packages and AlphaBot2 object. We also need to initialize

the Line Sensor object:

import RPi.GPIO as GPIO

From TRSensors import TRSensors

Import time

TR = TRSensor() #initialize Line Sensor object

Then, set the rest of the GPIO configurations. We will use BCM as

the GPIO pin numbering system. We will also be turning off the

warnings if the pins are used. We will set the Line sensors as input

pins.

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Before using the Line sensor, we must provide them with a

calibration value for the array of sensors. Given the inherent

inaccuracies in surface measurements within the environment, this

calibration ensures reliable and precise sensor performance. We

measure the reflectance of both the white and black surfaces. As

black paper is not provided, we'll utilize the table surface as a

reference for the black surface.

• For consistent calibration values, we'll use a 'for' loop to

obtain four readings from the Line sensor, to compute

statistics, i.e., the average of the infrared reflectance.

• We will code an input prompt to ensure the robot is on both

white and black surfaces, i.e., the table surfaces

• Place the robot on white surface, press Enter to initiate the

calibration process, executed by the TR.calibrate() function.

And we’ll repeat this process on a black surface.

• This calibration aims to establish baseline values for the

line tracking sensors in response to the reflectance

differences between white and black surfaces.

for i in range(0,4):

print("Place the robot on white surface. Please ensure all line

tracking sensors are above the white surface.")

input("Press Enter to continue...")

TR.calibrate()

print("Place the robot on black surface. Please ensure all line

tracking sensors are above the black surface.")

input("Press Enter to continue...")

TR.calibrate()

Next, we will analyze the calibrated values for our white and black

reflectance surfaces. Press the Enter key when you are done.

14

print("Calibrated Min: ", TR.calibratedMin)

print("Calibrated Max: ", TR.calibratedMax)

input("Press Enter to continue...")

With the while loop with ‘True’ as condition, we retrieve the Line

sensors status from the GPIO.input and the following observations

must satisfy:

• The terminal will display a 'list', [x, x, x, x, x], where

each value inside the list corresponds to each of the Line

sensors.

• If the Line sensors are placed at a white surface, the

reflectance should be near 0

• If the Line sensors are placed on a black surface I.e. table

surface in our case, the reflectance value should be near

1000.

while True:

position,Sensors = TR.readLine()

print(position,Sensors)

time.sleep(0.25)

Run the Line_detect.py (python3 Line_detect.py) and test the program

by analyzing the change in values resulting when you place the robot

on a different surface.

- The End –

	1 Introduction
	2 Remote access the robot
	3 Programming environment for Raspberry Pi
	4 Inputs and outputs of Raspberry Pi
	5 Robot actuators
	5.1 Motor teleoperation and pan-tilt camera
	5.2 Buzzer

	6 Robot Sensors
	6.1 Ultrasonic (Ping) sensor for range measurement
	6.2 Tracker (TR) / Line Sensors for infrared line tracking

